Pancreatic islet adaptation to fasting is dependent on peroxisome proliferator-activated receptor alpha transcriptional up-regulation of fatty acid oxidation.
نویسندگان
چکیده
The cellular response to fasting and starvation in tissues such as heart, skeletal muscle, and liver requires peroxisome proliferator-activated receptor-alpha (PPARalpha)-dependent up-regulation of energy metabolism toward fatty acid oxidation (FAO). PPARalpha null (PPARalphaKO) mice develop hyperinsulinemic hypoglycemia in the fasting state, and we previously showed that PPARalpha expression is increased in islets at low glucose. On this basis, we hypothesized that enhanced PPARalpha expression and FAO, via depletion of lipid-signaling molecule(s) for insulin exocytosis, are also involved in the normal adaptive response of the islet to fasting. Fasted PPARalphaKO mice compared with wild-type mice had supranormal ip glucose tolerance due to increased plasma insulin levels. Isolated islets from the PPARalpha null mice had a 44% reduction in FAO, normal glucose use and oxidation, and enhanced glucose-induced insulin secretion. In normal rats, fasting for 24 h increased islet PPARalpha, carnitine palmitoyltransferase 1, and uncoupling protein-2 mRNA expression by 60%, 62%, and 82%, respectively. The data are consistent with the view that PPARalpha, via transcriptionally up-regulating islet FAO, can reduce insulin secretion, and that this mechanism is involved in the normal physiological response of the pancreatic islet to fasting such that hypoglycemia is avoided.
منابع مشابه
Fasting induces changes in peripheral blood mononuclear cell gene expression profiles related to increases in fatty acid -oxidation: functional role of peroxisome proliferator–activated receptor in human peripheral blood mononuclear cells
Background: Peripheral blood mononuclear cells (PBMCs) are the only readily available cells in healthy humans. Various studies showed disease-characteristic gene expression patterns in PBMCs. However, little is known of nutritional effects on PBMC gene expression patterns. Fatty acids are nutrients that regulate gene expression by activating the nuclear receptor peroxisome proliferator– activat...
متن کاملCompare the Effect of Eicosapentaenoic Acid and Oxidized Low-Density Lipoprotein on the Expression of CD36 and Peroxisome Proliferator-Activated Receptor Gamma
Background: There is evidence that CD36 promotes foam cell formation through internalizing oxidized LDL (ox-LDL) into macrophages therefore, it plays a key role in pathogenesis of atherosclerosis. In addition, CD36 expression seems to be mediated by nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR-γ). The aim of the present study was to evaluate and compare the effect of ...
متن کاملThe peroxisome proliferator-activated receptors (PPARs) are a family of transcription factors belonging to the nuclear
This article is available online at http://www.jlr.org The peroxisome proliferator-activated receptors (PPARs) are a family of transcription factors belonging to the nuclear receptor superfamily. The PPAR family consists of three subtypes, PPAR , PPAR , and PPAR / , all of which are regulated by fatty acids and their derivatives. The PPARs bind to peroxisome proliferator response elements (...
متن کاملMetabolic adaptation to intermittent fasting is independent of peroxisome proliferator-activated receptor alpha
BACKGROUND Peroxisome proliferator-activated receptor alpha (PPARA) is a major regulator of fatty acid oxidation and severe hepatic steatosis occurs during acute fasting in Ppara-null mice. Thus, PPARA is considered an important mediator of the fasting response; however, its role in other fasting regiments such as every-other-day fasting (EODF) has not been investigated. METHODS Mice were pre...
متن کاملPeroxisome proliferator-activated receptor alpha mediates the effects of high-fat diet on hepatic gene expression.
Peroxisome proliferator-activated receptors (PPARs) are transcription factors involved in the regulation of numerous metabolic processes. The PPARalpha isotype is abundant in liver and activated by fasting. However, it is not very clear what other nutritional conditions activate PPARalpha. To examine whether PPARalpha mediates the effects of chronic high-fat feeding, wild-type and PPARalpha nul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Endocrinology
دوره 146 1 شماره
صفحات -
تاریخ انتشار 2005